You will experience a faster desktop after the installation of CUDA 4.0. Meanwhile, if you installed SMPlayer, you can playback 1080p videos with the help of vdpau.
Step 1 :
Add the CUDA 4.0 PPA.
sudo add-apt-repository ppa:aaron-haviland/cuda-4.0
Step 2 :
sudo apt-get update
sudo apt-get upgrade
64-bit :
sudo apt-get install nvidia-cuda-gdb nvidia-cuda-toolkit nvidia-compute-profiler libnpp4 nvidia-cuda-doc nvidia-current-modaliases libcudart4 libcublas4 libcufft4 libcusparse4 libcurand4 nvidia-current nvidia-opencl-dev nvidia-current-dev nvidia-cuda-dev nvidia-kernel-common opencl-headers
32-bit :
sudo apt-get install nvidia-cuda-gdb nvidia-cuda-toolkit nvidia-compute-profiler lib32npp4 nvidia-cuda-doc nvidia-current-modaliases lib32cudart4 lib32cublas4 lib32cufft4 lib32cusparse4 lib32curand4 nvidia-current nvidia-opencl-dev nvidia-current-dev nvidia-cuda-dev nvidia-kernel-common opencl-headers
Step 2a :
If you do not have any nVidia driver installed before, you need to do the following command. Otherwise, this step is not required at all.
sudo nvidia-xconfig
Step 3 :
Reboot your system.
Step 4 (Optional) :
To install SMPlayer.
sudo apt-get install smplayer smplayer-translations smplayer-themes
Then set it to use "
vdpau
" at "Output Driver
" at "Preference
".Step 5 - Compiling of nVidia CUDA sample codes (Optional)
Some sample codes at gpucomputingsdk_4.0.13_linux.run cannot be compiled successfully. However, I would like to share how I compile some of them.
(a) Install the gupcomputingsdk with the following command and accepted the default setting that it provides.
sudo apt-get install freeglut3-dev libxi-dev libXmu-dev
Go to the following link :
http://developer.nvidia.com/cuda-toolkit-40#Linux
wget http://developer.download.nvidia.com/compute/cuda/4_0_rc2/sdk/gpucomputingsdk_4.0.13_linux.run
sudo chmod +x gpucomputingsdk_4.0.13_linux.run
sh gpucomputingsdk_4.0.13_linux.run
sudo nano /etc/environment
Append the following at the end of the entry.
:/usr/lib/nvidia-current:/usr/lib/nvidia-cuda-toolkit
source /etc/environment
(b1) Set LD_LIBRARY_PATH :
sudo nano /etc/ld.so.conf.d/cuda.conf
Append the following lines to the file.
/usr/lib/nvidia-current
/usr/lib/nvidia-cuda-toolkit
sudo ldconfig
(b2) Create a softlink of libcuda.so :
sudo ln -s /usr/lib/nvidia-current/libcuda.so /usr/lib/
sudo ln -s /usr/lib/nvidia-current/libcuda.so.1 /usr/lib/
(c) Make softlink to the /usr/include/thrust :
sudo mkdir /usr/lib/include
sudo ln -s /usr/include/thrust /usr/lib/include/
(c1) Add the path of new location of thrust to the
common/common.mk
:sudo nano ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk
Go to line 64 and add "
-I/usr/lib/include
" :Change from -
INCLUDES += -I. -I$(CUDA_INSTALL_PATH)/include -I$(COMMONDIR)/inc -I$(SHAREDDIR)/inc
Change to -
INCLUDES += -I. -I$(CUDA_INSTALL_PATH)/include -I/usr/lib/include -I$(COMMONDIR)/inc -I$(SHAREDDIR)/inc
(d) Compiling of the sample code :
cd NVIDIA_GPU_computing_SDK/C
make
The executable sample codes will be situated at
~/NVIDIA_GPU_Computing_SDK/C/bin/linux/release/
Run the sample codes as the following, e.g. nbody and deviceQuery :
./nbody
./deviceQuery
(e) According to the developer of the PPA, this issue
***(f) The CUDA 4.0 PPA just updated today (April 26, 2011 GMT+8) and it solved the Step 5(b) to Step 5(b2) problem.
That's all! See you.